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ELEMENTARY FUNCTIONS, AND METHODS OF THEIR DETERMINATION

Ya.Z.Kazavchinskiy#
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The equation of state of a real gas in terms of elementary
functions is derived éver a wide range of density variation,
including the saturation curve and the liquid phase region,
from experimental data of the gas phase. The equation is
valid for the entire one-phase region, including the liquid
phase. The temperature functions, derived from the gas phase
data, are used to describe the liquid phase. Calculation by

computer is outlined, with reference to nitrogen.

The method of representing the equation of state in terms of elementary
functions was proposed in its original form as long ago as 1954 (Bibl.l). It
was later successfully used for an analytic description of the thermodynamic be-
havior of many real gases (Bibl.2 - 8). During this period, the method of de~
termining the elementary functions was modified and improved but has not yet at-
tained the necessary level of perfection. To make our exposition complete, we
will also present elementary considerations on the justification of the method.

The thermodynamic relation

(%)= (5)
written for the case of independent variables T and V, when twice integrated,

e ————————
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leads to the following form of the equation of state:

P=AWV)+AWNT+QT, V), | (1)

where the function Q(T., V), obtained as a result of double integration, char-
acterizes the curvature of the isochoric sections of the surface of state of a
real gas and is small by comparison with the linear part of the equation,
As(V) + A1(V)T, which is confirmed by experiment.

According to the general Bogolyubov-Mayer theorem, the right-hand side of
the equation of state is a power series in density 1/V, whose coefficients
(termed virial) depend on the temperature. It follows that the functions A,(V)
and A, (V) are power series (practically polynomials) in density 1/V with con-
stant coefficients, while the function Q(T, V) is a series in 1/V with tempera-
ture-dependent coefficients.

For an analytic description of the function Q(T, V) with the necessary ac-
curacy., it is convenient to represent it in the form of a sum of products of

functions with separated variables, i.e.,

. V) = 8,010, (2

Studies show that it is often possible to confine the calculation to a
single term on the right-hand side of eq.(2); however, if two terms are re-
tained. then eq.(1l) will describe the experimental data of a real gas with high
accuracy over a wide range of temperature and pressure variation.

Passing to the dimensionless coordinates T = T/T., w = V./V, 0 = PV/RT. /130
and confining ourselves to two terms for the description of the curvilinear part
of Q(T, V) of eq.(1l), we obtain, after introducing new symbols,

ome -ttt Bh 1y, | (3)

where the functions @y, @3, ¥ and v depend only on w, while ¥ and ®, in accord-




ance with the general theory, are decreasing functions of the temperature not
containing T in the zeroth and first order.

Let us assume that the temperature functions ¢ and ¢ are known as mono-
tonically decreasing functions of the temperature, and that we also know the
corresponding volume elementary functions @y, @, B, Y at which eq.(3) satisfies
the experimental data on the compressibility of a real gas over a wide range of
variation of its parameters. We will call all these elementary functions ™rue'.

tarting from the structure of eq.(3), two lemmas readily amenable to direct

verification can be formulated.

Lemma 1. The introduction into eq.(3) of new functions B, Y which are
linear combinations of ™rue" B and Y preserves the validity of the equation
and may lead to new temperature functions which are linear combinations of the
"rue" ¥ and .

Lemma 2. The replacement of the "true" temperature functions ¥ and v or

of their linear combinations by new ¥, © in the form of

-‘F‘=ao'+¢”+¢, TQ=[)O+b‘t+(P' ()

where as. a. by, b are arbitrary constants, does not impair the validity of
eq.(3) and only leads to the new functions 55, 5}, which are connected with the
"rue functions in the following way:
G =tg— 0B —byy, & =0,—aB=by. | (5)

These lemmas continue to hold, regardless of the number of functions in
the curvilinear part of eq.(3). This permits us to propose a simple and con—
venient method of analytic determination of the volume elementary functions oo,
o, B, Y, ... by the aid of the equations of isotherms which will be termed
basic in what follows. The number of base isotherms should be equal to the
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number of volume elementary functions; they are selected in the region in which
the most reliable experimental data have about the same or a greater extent in
density uw.

The base isotherms are analytically described in the form of polynomials
in densitr Wy to satisfy the critical point and the critical conditions, one of
the isotherms selected will be the critical isotherm whose equation satisfies
these conditions.

For the case of two temperature functions in the curvilinear part of the
equation, let us take four isotherms at the temperatures T1, Tz, Ta, Ta, and

write the srstem of four equations in the form
% + ayt + Bh () + 19 () = o, . (6)

where i takes the values 1, 2, 3, L in increasing order of temperature (the
subscript 1 relates to the critical isotherm), while oy is the analytic expres—
sion of the it isotherm in the form of a polynomial in w,

Eliminating ®o, @; from the system of equations (6), we obtain on the left-
hand side “rue combinations of "true" B and Y, and on the right-hand side their
corresponding analvtic expressions. Ve take one of these expressions as the [;3;
function 5, and the other as the function.?} thus, we have solved the problem
of determining the volume functions of the curvilinear part of eq.(3).

To determine the elementary functions of the linear part of eq.(3), let us
make use of Lemma 2, from which it follows that the values of the new func-
tions ? and 5 on two isotherms may be arbitrarily assigned. Two of the four
basic isotherms, for example T3 and 7., are taken for this purpose.

Let us rewrite eg.(3), substituting the "™ rue" functions by new ones

"=k S B 4T (3)

In accordance with the preceding, let us take, on the isotherms 7. 7.,
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HO) =90 = Pz by |

after which, from eq.(B'), we obtain for these isotﬁerms:

%+ 4 =0, o+ o5, =g, : (7)
In the system of equations (7), let us substitute 0y, 0z by their analytic ex-
pressions, and let us find 5; and 5;; thereby all four volume functions have
been determined in eq.(3'). The temperature functions ¥ and 5 along the non-
basic isotherms remain unknowns. They may be determined from the available ex-—
perimental data on each isotherm, for example by the method of least squares.
It is simpler, however, to use the more convenient method of linearization,

which is as follows:

Let us rewrite eq.(3') in the form of
e =
i 34 1 (@)

If, from the experimental data, we plot on each isotherm the left-hand side
of eq.(8) against the quotient Y/3, we should obtain a straight line whose char—
acteristics equal the values of ¥ and ® on the given isotherm. If, however, we
obtain distinctly curved lines on the isotherms, this indicates that it is in-
sufficzient to use only two terms in the curvilinear part of the equation of
state; one more term and a fifth base isctherm must be introduced. On the other
hand. it mar also happen that E is proportional to §'and that the quotient ;75
remains practically constant. This means that, in the curvilinear part of the
equation, we must retain only a single term and use only three base isotherms.

In fact, in accordance with eq.(8), all cases considered up to now result
in straight lines, which must be so drawn as to minimize the scattering of the
test points and vield optimum agreement with the experimental data, making

certain at the same time tha®: the values of V and 5 lie on smooth curves depend-




ing on the temperature.
Having obtained the graphs of the functions ¥ and 5 over the entire [132
temperature range for which data are available, let us set up the analytic ex-

|- pressions of these functions according to eq.(5) in the form of

Fmaytact g By 4 G g |
‘ T tu.ﬂ .y t‘
+—':—:—+...+—f5—. (9)

For good satisfaction of the values found for the functions @ and-5, let
us take a sufficient number of terms in egs.(9), with the stipulation that the
functions on the base isotherms assume the prescribed values. In eqs.(9), the

| polvnomial in 1/7T can be replaced by other decreasing functions of the tempera-
ture, if they yield satisfactory agreement in a simpler manner,

Let us substitute the analytic expressions (9) into eq.(3?) and collect
the terms in T in the zeroth and first order, which will reducc this eguation
to the form of eq.(3) in which the factors before B and Y are monotonically de-
creasing functions of temperature.

The equation of state, set up in this manner, will fully agree with the
experimental thermal data, including the saturation curve, provided that the
equations of the base isotherms are sufficiently accurate., It can also be as—
serted that the equation will be in satisfactory agreement with the caloric
quantities, since anglogous equations obtained by a less improved method have
been in good agreement with these data, as has been verified repeatedly.

However, it is possible to ensure optimum agreement with the experimental
caloric data if they are represented sufficiently, using them in deriving the
equation of state for correcting the temperature functions by their first and

second derivatives. The calculated expressions for the enthalpy resulting from
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eq-(3') contain the first derivatives of the functions ¥ and ®, while the calcu—
lated expressions for the heat capacity ¢, contain the second derivatives as
well, so that these derivatives can be determined from the experimental caloric
data (as the functions ? and 5 themselves are determined from the thermal data),
which we have described in detail elsewhere (Bibl.2).

At the present time, equations of state must not only properly describe
the thermal and caloric experimental data, but must also give reliable results
at high temperatures (BOOOOK and above) for which there are no experimental data
in existence.

To extrapolate an equation of state to the high-temperature region, a re-
liable method of extrapolating the functions ¥ and » to this region must be
found. The extrapolation may be performed by the aid of the second virial co-
efficient. which can be calculated by methods of statistical physics. The
problem is facilitated by the fact that the curvilinear part of eq.(3'), at high
Lemperatures, is described with sufficient accuracy by a single term, i.e., the
functions ¥ and © become equal. OSince the linear part of the second virial co-
efficient is known from the equation of state (3'), the curvilinear part and /133
thus also the temperature function, is easily determined from its values found
b the statistical method.

Using the above~described method, the equation of state can be set up over
a wide range of density variation, embracing the saturation curve and the region
of the liquid phase, provided that the data in this range, at supercritical
temperatures, are represented in the form of a rectangular net of isotherms and
isochores. There are many cases, however, in which the experimental data in
the gas phase for T > 1 are given in the form of a rectangular net of isotherms

and isobars at restricted densities, and no experimental data exist for densi-



ties corresponding to the liquid phase. The liquid phase itself, at subcritical
temperatures, is represented by data in a narrow interval of density variation
on each isotherm. which shifts into the region of increasing values of w with
decreasing temperature.

To obtain, in this case, the equation of state represented in terms of
elementar;r functions over the entire range of density variation, we must pro-
ceed as follows:

From the experimental data of the gas phase, using the method described
above. we construct an equation of state that is valid up to a certain density
Ws, determined by these experimental data. In this equation, the temperature
functions are determined in the entire temperature interval for which data ex—
ist, including low temperatures of the order of the normal boiling point and be-
low it.

General considerations connected with the continuity of the gaseous and
liquid state, as well as experimental verification, show that the entire one-
phase region. including the liquid phase, can be described by the aid of an
equation represented in terms of elementary functions.,

It mar be concluded from this that the temperature functions, derived from
data of the gas phase, mary be used to describe the liquid phase. This makes
it possible to determine, by the method of least squares, the volume functions
over all density variations, i.e., the coefficients of the polynomials in terms
of which they are represented. However, in connection with the large number of
unknown coefficients so obtained, the only way the problem can be solved is with
a computer.

To simplify the problem, it is suggested to separately describe the liquid

phase by means of the equation



(10)
where the temperature functions 3 and 5 coincide Qith the corresponding func-
tions of the gas phase. The unknowns in eq.(10) are the volume elementary func—
tions %5r, ®31r. Pr, and Ye¢, or more accurately the coefficients of the poly-
nomials in density w, describing these functions. Prescribing the number of
verms in each of these polynomials, the coefficients may be determined by the
method of least squares from the experimental data of the liquid phase and the
lower boundarr curve, provided the functions 5 and 5 in eq.(lO) are known.

To obtain a smooth course of the functions on transition from the gas to
the liquid phase., it must be stipulated that, at a density ws, not only the
values of the corresponding functions of the gas phase and liquid phase shall
coincide but also their first derivatives. To obtain also a smooth course of
the isotherms and elementary functions at high densities, the equations for both
phases must not only satisfy the experimental data themselves but also the /134
Maxwell rule, with acceptable accuracy, for the isotherms T < 1. With this ob-
ject, the condition equations designed to satisfy the experimental data of the
liquid phase should include a certain number of condition equations expressing
the laxwell rule.

The above-describel method of constructing the equation of state has given
satisfactory results in practical use. In particular, the method has been used
brr A,A.Vasserman to describe the thermodvnamic properties of nitrogen from the

experimental data (Bibl.9 - 11).
BIBLIOGRAPHY

1. Kazavchinskiy, Ya.Z.: Dokl. Akad. Nauk SSSR, Vol.95, p.1005, 19513 Teplo-

energ., NO-?, 195’4_0



-3

9.
10.

11.

NASA TT F-10,078

Kazavchinskir, Ya.Z.: Teploenerg., No.7, 1958; No.ll, 1940.

Jasserman, AeAe: Inzh, Fiz. Zh., No.l, 1940.

Zagoruchenko, VeAe: Zh. Fiz, Khim., Vol.33, pp.607, 662, 1959; Inzh. Fiz.
Zhe, No.ll, 1941; Khim. i Khim. Tekhn., No.3, 1959; Neft! i Gaz, No,2,
1959; No,10, 1961.

Katkhe, O.I.: Teploenerg., No.7, 1958; Inzhe. Fiz. Zh., No.5, 1958.

Tsorman, Gele: Zh. Fiz. Khim., No.5, 1959; Kholodil'n. Tekhn., No.l, 1959;
Neft? i Gaz, No.l2, 1959.

Rabinovich, Ve.A.: Ingh. Fiz. Zh., No.5, 19460; No.9, 1952.

Tabachnikov, A.Ge: Inzh. Fiz. Zh., No.l, 1961; Neft! i Gaz, No.7, 1962.

Michels, J., Lunbeck, R., and Wolkers, G.: Physica, Vol.1l7, p.801, 1951.

Sourel, J.: J. Rech. CeNeReS., Nos42, pe21, 1958.

van Urk, A.Th.: Commun, Kamerlingh Onnes Lab. Univ. Leiden, No.1694, 192,.

Received December 27, 1963

10



